

Homework 3

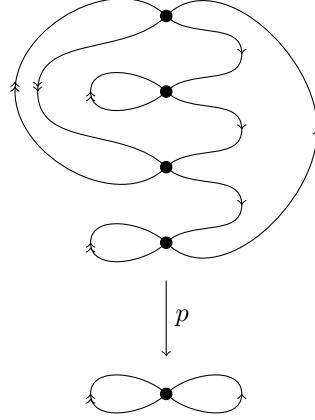
Exercise 3.1. Let X be a topological space and $e \in X$ a point. Let $\mu: X \times X \rightarrow X$ be a map with $\mu(e, x) = \mu(x, e) = x$ for every point $x \in X$. Prove that $\pi_1(X, e)$ is abelian.

Exercise 3.2. Let Z be a path-connected space, and $p: Y \rightarrow X$ a cover. Let $z_0 \in Z$ be a point and $f: Z \rightarrow X$ a map. Let $y_0 \in Y$ be a point with $p(y_0) = x_0 = f(z_0)$. Let $z \in Z$ be another point, and $\gamma_0, \gamma_1 \in \Omega(Z, z_0, z)$ paths from z_0 to z . Denote $\gamma'_i = f \circ \gamma_i: I \rightarrow Y$ for $i = 0, 1$. Let $\tilde{\gamma}_i$ be lifts of the paths γ'_i that start at $y_0 \in Y$. Show that if the image of $\pi_1(f): \pi_1(Z, z_0) \rightarrow \pi_1(X, f(z_0))$ is contained in the image of $\pi_1(p): \pi_1(Y, y_0) \rightarrow \pi_1(X, f(z_0))$, then $\tilde{\gamma}_0(1) = \tilde{\gamma}_1(1)$.

Exercise 3.3. (1) (hard) Let X be the following graph:

Find all covers of degree 3 up to homeomorphism over X .¹

(2) Compute the group of deck transformations $G(Y)$ of the cover $p: Y \rightarrow X$:



Exercise 3.4. Let X be path-connected and $x \in X$. Show that $\pi_1(X, x)$ is trivial if and only if every map $S^1 \rightarrow X$ extends to a map $D^2 \rightarrow X$.

¹It is fine if you list them with repetition.